RESOLVENT ESTIMATES OF THE DIRAC OPERATOR
نویسندگان
چکیده
منابع مشابه
Non-Perturbative Dirac Operator Resolvent Analysis
We analyze the 1 + 1 dimensional Nambu-Jona-Lasinio model nonperturbatively. In addition to its simple ground state saddle points, the effective action of this model has a rich collection of non-trivial saddle points in which the composite fields σ(x) = 〈ψ̄ψ〉 and π(x) = 〈ψ̄iγ5ψ〉 form static space dependent configurations because of non-trivial dynamics. These configurations may be viewed as one d...
متن کاملExtrinsic Eigenvalue Estimates of the Dirac Operator
For a compact spin manifold M isometrically embedded into Euclidean space, we derive the extrinsic estimates from above and below for eigenvalues of the Dirac operators, which depend on the second fundamental form of the embedding. We also show the bounds of the ratio of the eigenvalues.
متن کاملOn Eigenvalue Estimates for the Submanifold Dirac Operator
We give lower bounds for the eigenvalues of the submanifold Dirac operator in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude by translating these results in terms of intrinsic twisted Dirac operators.
متن کاملDirac Cohomology for the Cubic Dirac Operator
Let g be a complex semisimple Lie algebra and let r ⊂ g be any reductive Lie subalgebra such that B|r is nonsingular where B is the Killing form of g. Let Z(r) and Z(g) be, respectively, the centers of the enveloping algebras of r and g. Using a Harish-Chandra isomorphism one has a homomorphism η : Z(g) → Z(r) which, by a well-known result of H. Cartan, yields the the relative Lie algebra cohom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis
سال: 1995
ISSN: 2196-6753,0174-4747
DOI: 10.1524/anly.1995.15.2.123